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Abstract

In the previous progress report for 1989-90, a technique was discussed for photo genera-

tion of radicals that can be used in the recovery of oxygen and metals from extraterrestrial re-

sources. This report is a continuation of that discussion, but is focused on the progress that has

been achieved in the past 12 months. During that period it was necessary to move the equipment

from the Arizona Materials Laboratories to the Solar Energy Research Facility at the main campus

of the University of Arizona. In spite of that delay we have conducted a number of experiments

and have achieved sign/ficant results.

Introduction

This program is funded by the Space Engineering Research Center, the Arizona Mining

and Minerals Resources Research Institute (Grant # Gl104104) and the Solar Energy Research

Facility. We gratefully acknowledge their support. Because of the nature of the present funding we

have submitted a pre-proposal to the Solar Energy Research Institute in Golden, Colorado and a

full proposal to the U. S. Bureau of Mines for continuation of this work.

The concept behind this work has been to examine methods whereby radicals can be

generated and used in the processing of refractory materials. In that regard we have focused on

the use of sunlight. Sunlight provides useful energy for processing in the forms of both thermal

and quantum energy. While the use of thermal energy is well accepted, the use of quantum energy

of the solar photons (photonic processes) for chemical reactions presents new and exciting pos-

sibilities.

Light can affect materials thermally or through photonic processes, the absorption of light

can lead to an increase in the vibrational, rotational, and translational energy of the atoms of the

material. This shows up, macroscopically, as an increase in temperature and, once absorbed, the

effectiveness of the energy is not dependent on the wavelength of light. Photonic processes are



IA-48

Wavelength dependent and are characterized by a threshold wavelength that is specific for each

process and material.

If light is absorbed by a molecule and it has sufficient energy, it can cause a transition of

electrons from one orbital to another. If the electron belongs to a chemical bond, the bond may be

broken by this transition. Ultra violet (UV) and near UV radiation, as the most energetic portion of

the solar spectrum, can break a wide variety of bonds, including that of diatomic chlorine. It is

that potential which is the focus of the present investigation.

Photo enhanced chlorination could be used to separate metals from complex alloys such

as that which might be produce in in situ electrolysis of Lunar regolith. Or it might also be possible

to use solar energy in the chlorination and/or carbochlorination of metal oxide to produce oxygen.

A number of researchers have examined the chlorination kinetics of metals, metal oxides

and metal sulfides. Certainly the most extensive and through work has been conducted by Dr. A.

Landsberg at USBM's Albany, Oregon Research Center (1 - 6).

Dr. Landsberg found that the chlorination kinetics of both metals and metal oxides involves

two separate processes that can be distinguished by the order of their dependence on the partial

pressure of CI2. In all instances the order has been found to be either 1/2 or 1 depending on the

temperature of reaction. The 1/2 power suggests that the splitting of diatomic chlorine is involved

in the rate limiting step.

The chlorination of a metal can, in general, be represented by the following reaction:

M(S) + _ 42xCI _- MCI2x (1)

where M represents any metal. The equation shows that two reaction paths are possible, one in-

volving diatomic chlorine and the other monatomic chlorine. The resistors in the equation serve as

reminders that while both reactions proceed in parallel it is expected that the resistance of one of

the paths will be so large that it will effectively preclude that mechanism.

Carbochlodnation is more complex. Badn and Schuler, however, have provided convinc-

ing evidence of the importance of monatomic chlorine in the chlorination of TiO 2 (7). Those work-

ers reacted disks of TiO 2 with and without carbon In the presence of CI2 and Ci2-CO-CO 2 gas

mixtures. When the CI2-CO-CO 2 gas mixture was used the C02/CO ratio was the same as in the

Boudouard equilibrium for the particular temperature under Investigation. The chlorination rates of

TiO 2 without solid carbon, but with the C02-C0 gas mixture, was several orders of magnitude less

than that achieved when solid carbon was present. Since the CO and CO 2 established the same

Oxygen potential as that achieved with the solid carbon, Barin and Schuler deduced that the car-

bon activated the chlorine by splitting the diatomic molecule.
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To test their theory, Barin and Schuler placed small inert spacers between the disks of

carbon and TiO2. They found that the rate of chlorination decreased as the separation between

the carbon and TiO2 increased. At a separation distance of 20# m the rate was reduced by half,

and at a separation of 100#m the rate of chlorination was equal to that experienced without solid

carbon being present. Barin and Schuler postulated that the probability that monatomic chlorine

(formed on the surface of the solid carbon) recombines before reaching the TiO2 increases with

the separation distance.

Experimental Results

A number of experiments have been conducted in the chlorination of metals with and

without the aid of UV and near UV light. The results of some of those experiments are discussed

below.

In the chlorination of Fe the resistor for the monatomic path in reaction 1 is substantially

greater than the resistor involving the diatomic chlorine. The rate of chlorination of iron, unlike

many other metals, has been found to be dependent only on the partial pressure of CI2 to the first

power.

To test the basic hypothesis of the present investigation, namely, that UV and near UV

light can be used to generate monatomic chlodne and thereby enhance chlorination rates, identi-

cal Fe specimens were reacted in a chlorine containing gas at a fixed pressure. The results of that

test are shown in Figure 1. The specimen reacted at 292 oc was exposed to UV and near UV

radiation at specified intensities while the specimen reacted at 325 oc was not. The specimen

exposed to light reacted twice as fast as the specimen not exposed to light. At 325 °C the rate of

chlorination of Fe will double approximately every 15 °C (4). Thus, the rate observed at 292 oc is

approximately 800% greater than that which would occur at the same temperature without UV and

near UV light.

The increased chlorination rate with UV and near UV radiation can most likely be attributed

to augmentation of the total reaction rate by an increase in the rate of chlorination by monatomic

chlorine.

These results run counter to those obtained by Landsberg and Block who attempted to

use gamma rays to enhance the chlorination rate of metals (4). It is uncertain whether their intent

was to activate the metal by radiation damage or to dissociate CI2. A gamma ray has sufficient

energy to dislodge a proton or neutron from the nucleus of an atom. A gamma ray can dissociate

CI2 if there is a mechanism to assimilate the large excess energy. If no mechanism exists disso-

ciation will not take place. In essence a gamma ray has too much energy to form monatomic

chlorine by a photonic process.
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Future Work

The current experimental work involving metals will be continued. We plan, however, to

also examine the potential for utilizing solar energy in enhancing both chlorination and carbochlo-

dnation of metal oxides, including ilmenite.
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Figure I - Comparison of reaction results with and without UV and near UV light


